In Vitro Quantification of Guidewire Flow-Obstruction Effect in Model Coronary Stenoses for Interventional Diagnostic Procedure

The objective is to quantify the guidewire (diameter of 0.35 mm) flow-obstruction effect in the in vitro model coronary stenoses in relation to trans-stenotic pressure drop, Δp, fractional flow reserve (gFFR; “g” represents FFR measurement with guidewire insertion) and coronary flow reserve (gCFR) for steady and pulsatile physiological flows. The sensor tipped pressure or flow measuring guidewire insertion through stenotic lumen increases the trans-stenotic pressure drop or reduces the pharmacologically induced hyperemic flow in the coronary arteries with plaques. These hemodynamic changes may cause error in true FFR and CFR measurements, especially for intermediate coronary stenosis. To quantify guidewire flow-obstruction effect, simultaneous measurements of trans-stenotic pressures and flow were performed by two methods: (a) guidewire based measurements (gCFR and gFFR by inserting sensor tipped guidewires) and (b) true physiological measurements (CFR by in-line Doppler flow cuff and FFR by the radially drilled pressure ports in three epicardial coronary stenotic test sections, postangioplasty, intermediate, and preangioplasty). The diagnostic parameters measured before guidewire insertion (CFR and FFR) and during guidewire insertion (gCFR and gFFR) were validated numerically and correlated with the new diagnostic parameter “lesion flow coefficient (LFC).” There was significant flow reduction with increased trans-stenotic pressure drop due to guidewire insertion. The FFR-gFFR and CFR-gCFR correlations were obtained for FFR=0.92×gFFR+0.097 ($R^2=0.99$) and CFR=0.91×gCFR+0.44 ($R^2=0.99$), respectively, where gFFR is reported from clinical pressure-flow data. Similar highly regressed ($R^2>0.9$) correlations were obtained for LFC and gLFC with flow ratios and pressure ratios. There was significant difference between steady and pulsatile pressure drops for the same mean flow with and without guidewire insertion. The trans-stenotic hemodynamics was altered due to guidewire insertion. The true FFR and CFR were underestimated because of guidewire insertion. Hence, the FFR-gFFR and CFR-gCFR correlations can be used to find out true FFR and CFR from clinically measured values (i.e., gFFR and gCFR). In addition, the gLFC-gCFR and gLFC-gFFR were correlated significantly for post- and preangioplasty conditions. [DOI: 10.1115/1.2776336]

Keywords: hemodynamics, guidewire diagnostic, transstenotic pressure drop, lesion flow coefficient (LFC), intermediate stenosis

Introduction

To assess the hemodynamic severity of angiographically moderate coronary stenosis, hemodynamic parameters such as fractional flow reserve (gFFR) [1] and coronary flow reserve (gCFR) [2] (“g”, clinical measurement with guidewire insertion) are measured widely in contemporary clinical methods. The small diameter pressure and/or flow sensor tipped guidewires [3] (diameter of 0.014 in., i.e., 0.35 mm) are advanced through the stenosis into the distal vessel to measure the distal hyperemic pressure, p_{rh} (“~” is the mean or time averaged quantity for pulsatile flow) and gFFR is determined by the ratio $\frac{p_{\text{rh}}}{p_a}$, where p_a is aortic pressure measured by guiding catheter [1,4,5]. A typical range of gFFR is 0.36 $< \text{gFFR} < 1$; gFFR $\rightarrow 1$ means $p_{\text{rh}} \rightarrow p_a$, which signifies less severe stenosis. In contrast, gFFR < 0.75 means significant stenosis, which may cause ischemia. The trans-stenotic pressure drop is given as $\Delta p=p_{\text{rh}}-p_a$ [6–9]. Similarly, intracoronary Doppler flow velocity measurement is performed with Doppler flow sensor tipped guidewire [10] and gCFR is calculated by the ratio of pharmacologically induced hyperemic flow (\dot{Q}_h) to basal coronary flow (\dot{Q}_b). A typical range of gCFR is $1 < \text{gCFR} < 4$; gCFR $\rightarrow 1$ means that there is no hyperemic response to the vasodilator drugs, i.e., severe stenosis. In contrast, gCFR $\rightarrow 4$ means that there is four times increase in basal flow due to vasodilators, indicating insignificant stenosis.

Potential risks and resulting consequences to the patients because of uncertainties in the pressure drop and flow measurements due to the size of the catheters and guidewires were reported by clinicians. Many clinicians had reported elevated physiological pressure drop (in clinical procedure, this is often referred to as pressure gradient) due to guidewire insertion [6,7]. These pressure...
drops were measured with large diameter angioplasty catheters (diameter of 1.4 mm) causing “tight fit” in the lumen of the stenosed artery, as explained analytically by Back et al. [11]. The initial use of miniaturized guidewire of diameter 0.45 mm in 15 patients before angioplasty [12] had demonstrated the increase in the pressure drop due to guidewire (32 mm Hg and 44 mm Hg for systole and diastole, respectively) and conventional balloon angioplasty catheter placement (77 mm Hg and 59 mm Hg for systole and diastole, respectively), confirming the uncertainty of pressure drop measurement due to the size of catheter or guidewire. Hence, we are interested in more accurate quantification of the guidewire flow-obstruction effect on Δp, FFR, and CFR in an in vitro experimental setup with the commonly used guidewire size of 0.35 mm.

Very few in vitro experimental studies reported the guidewire flow-obstruction effect. De Bruyne et al. [8] showed that the guidewire of diameter 0.38 mm affects the trans-stenotic hemodynamics with 20% overestimation of pressure drop in the severe stenosis with $>90\%$ area reduction. The increased flow resistance due to angioplasty catheter insertion was studied for a wide range of ratios of catheter diameter to coronary vessel diameter: 0.3–0.7 [13]. The flow resistance was increased by a factor of 3–33 for concentric configuration, indicating the importance of quantifying the catheter obstruction effect. A guidewire insertion changed the “averaged peak velocity (APV) versus time averaged mean velocity” relation in the throat region of stenosis, resulting in underestimation of true CFR [14].

All these in vitro studies had used Newtonian blood analog fluid and steady flow, which are physiologically inappropriate. Moreover, the guidewire flow-obstruction effect should be accurately quantified in intermediate stenosis zone in order to accurately diagnose the patients under “gray zone.” Hence, coronary stenosis hemodynamics is examined in detail to find out the effect of guidewire insertion on FFR and CFR in this in vitro experimental setup replicating clinical settings. This in vitro study reports more accurate results with realistic pulsatile flow using non-Newtonian blood analog fluid and compares the results with steady flow measurements. The newly developed diagnostic parameter, lesion flow coefficient (LFC), is also evaluated and compared with gFFR and gCFR [16]. The LFC considers the guidewire size in relation to the minimum lumen diameter along with pressure drop and flow. Hence, LFC is calculated and again compared with \bar{p}_r/\bar{p}_a and \bar{Q}/Q_0 when the guidewire is inserted. At hyperemic flow, $\bar{p}_r/\bar{p}_a = g_{FFR}$ and $\bar{Q}/Q_0 = g_{CFR}$.

Materials and Methods

In order to evaluate Δp, CFR, gCFR, FFR, gFFR, LFC, and gLFC before and during the guidewire insertion, a 1:1 bench top experimental setup and stenosis test sections are developed. The experimental setup and numerical methods are discussed as below.

In Vitro Experiments. Test section. The coronary stenosis test sections are manufactured with optical grade Lexan material ($\sigma_u = 65$ MPa, Rockwell hardness= R118, water absorption at saturation=0.35%) for three different geometries: postangioplasty, intermediate, and preangioplasty, i.e., 64.8%, 80%, and 89% area stenosis, respectively. Figure 1(a) shows the photograph of postangioplasty stenosis test section, illustrating three distinct regions: converging, throat, and diverging sections. The dimensions are based on clinical measurements and are shown in Table 1 [6,11]. Figure 1(b) shows the MicroCT (Intmkt Inc., TN) images of intermediate and preangioplasty stenosis test sections, edited in IMAGEj software (National Institutes of Health, MD) to find out exact geometric dimensions. To measure true trans-stenotic pressure without guidewire insertion, 0.3 mm diameter pressure ports are drilled radially along the stenotic test sections so that the pressure in the axial direction of the stenosis can be measured, as shown in Fig. 1(c). The MicroCT images in Fig. 1(b) are taken only for “stenotic portion” of the test section and hence they do not show all pressure ports.

In vitro flow loop. The flow circuit (Fig. 2) is designed to simulate the physiological flow profile proximal to the stenosis test section [17], as shown in Fig. 3. Glycerin-water solution prepared with 65% water+35% glycerin+0.02% xanthan gum by weight [18] is used as blood analog fluid (BAF), showing typical shear thinning non-Newtonian viscosity [19]. The typical range of magnitude of shear rates for coronary artery of 3 mm diameter with physiological blood flow velocity is 0–1000 s$^{-1}$. For this range of shear rate, the dynamic viscosity of real blood, μ, varies from 56 cP to 4 cP [19]. The viscosity data are regressed to the non-Newtonian viscous Carreau model, where zero shear rate viscosity $\mu_0 = 55.72$ cP, infinite shear rate viscosity $\mu_\infty = 3.39$ cP, time constant $\lambda = 9.62$ s, and power index $n = 0.2$. The BAF is stored in the overhead fluid storage tank, which is about 1 m above the level of test section. This tank generates enough driving pressure of 80 mm Hg in the flow circuit. The basic pulsatile flow, similar to the aortic flow profile, is generated by blood pump (Harvard apparatus, MA). The flow is then bifurcated into two tubes with two compliance chambers (C1 and C2) and resistances (R1 and R2). The desired flow profile is obtained by (1) maintaining a certain fluid column height in C1 and C2, (2) modifying resistances R1 and R2, and (3) the pump parameters, such as time period, systole to diastole flow ratio, and stroke length. Thus, coronary flow pulse with diastolic predominance is generated in the in vitro setup with a time period of 0.8 s (Fig. 3).

To observe the guidewire flow-obstruction effect and to quantify the overestimation of pressure drop, the pulsatile flow rate and trans-stenotic pressures are measured simultaneously for two conditions: with and without insertion of guidewires. These conditions are discussed below.

1. In true physiological pressure-flow measurements, pressure measurements are conducted using pressure ports drilled radially to the axial flow direction in the stenosis test section. The pressure ports are connected to a digital pressure scanner (Scanimeter Corp., WA), which acquire pressure data at every 12 ms time interval. These measurements are taken without insertion of guidewire. Hence, the pressure drop measured with this method is designated as a true physiological Δp.

2. In guidewire based pressure-flow measurements, the pressure sensor tipped guidewire (diameter of 0.35 mm) is advanced distal to the stenosis using a rotating hemostatic valve to measure \bar{p}_r. The sensor tip is placed over the distance $=\Delta z$ distal to the stenosis, where complete pressure recovery is observed. The proximal pressure \bar{p}_a is recorded by a digital pressure scanner with proximal pressure port. The \bar{p}_r is recorded using the Combomap system (Volcano Therapeutics, CA). This method acquires the physiological pressure measurements in clinical settings. Hence, the pressure drop measured with this method is designated as a guidewire based Δp.

The flow is measured by in-line Doppler flow sensor (Transonic Inc., NY) at the intervals of 1 ms. The true trans-stenotic pressure and flow are measured simultaneously. The flow and pressure data are recorded using the data acquisition system (National Instruments, TX). Later, the pressure data are analyzed to obtain trans-stenotic pressure drop and time period of pulse, T, by visual basic program.

Experimental protocol. After calibration of all measuring instruments, the steady flow experiment is performed. The gravity induced steady flow is generated by overhead tank. The steady
flow, Q is varied from a basal flow rate of 50 ml/min (\simRe$_{e}$ = 111) to a hyperemic flow of 125 ml/min (\simRe$_{e}$ = 278) for preangioplasty and 180 ml/min (\simRe$_{e}$ = 400) for postangioplasty by varying resistances R1 and R2 and keeping capacitances C1 and C2 zero, thus increasing the flow in four steps. The corresponding steady state pressure drops are measured with and without guidewire insertion. The reduced flow rate and elevated pressure drops are measured by both guidewire connected to the Comborap system and digital pressure scanner. To gauge the degree of guidewire obstruction during wire insertion, only external pressure scanner data are used throughout the experimental protocol. However, the guidewire based pressure readings are compared with digital pressure scanner data for confirmation only.

Next, pulsatile flow experiment is performed for the same stenosis test section. The pulsatile flow is obtained by varying C1 and C2 in addition to R1 and R2 as explained previously. The mean pulsatile flow rate is also varied in four steps from basal to hyperemic level. A similar procedure, adapted for the steady flow experiment, is used for guidewire based and true trans-stenotic pulsatile pressure and flow measurements. A total of three experiments is performed ($n = 3$). Similarly, all stenosis test sections are tested and the guidewire flow-obstruction effect with pressure drop overestimation is observed. Further, the data sets are analyzed for CFR, gCFR, FFR, gFFR, LFC, and gLFC.

Numerical Method. To validate the experimental data, the guidewire flow-obstruction effect is numerically calculated. Two numerical models are created: (1) true physiological flow condi-

Fig. 1 (a) Photograph of postangioplasty stenosis test section. A total of 16 pressure ports (diameter of 0.3 mm) is drilled radially along the axial direction of stenosis test section, spaced approximately 5 mm apart. Port No. 3 is located 3.4 mm proximal to the converging section. Port Nos. 5 and 7 are drilled on the opposite side of the shown face and are located at the start and at the end of throat section, respectively. (b) MicroCT images of intermediate and preangioplasty stenotic test sections. The picture is taken only for 2 cm in proximity to the stenosis test section. Port Nos. 4 and 5 are shown in this figure. A total of 16 and 14 pressure ports is drilled radially for intermediate and preangioplasty stenotic test sections, respectively. (c) Schematic diagram of stenosis test sections with inserted guidewire for postangioplasty case. (d) Schematic diagram of stenosis test sections without inserted guidewire for postangioplasty case.
tion and (2) guidewire inserted condition, where the guidewire is considered as concentric with lumen walls. The numerical models are constructed based on the dimensions measured by MicroCT (Table 1). The stenotic arterial walls are assumed as rigid from basal to hyperemic flow conditions. The numerical models with dimensional details are given in Figs. 1 and 1d. It is assumed that the stenosis model geometries are axisymmetric. The computational methodology is based on guidelines reported by Banerjee et al. [20].

The non-Newtonian fluid flow through the stenosis geometry is modeled as unsteady hemodynamics with shear layer instabilities for a pulse time period of ~0.8 s [20–22]. The corresponding governing Navier–Stokes equations are solved by finite element method, utilizing Galerkin formulation. The mesh and transient time increment are used with proper care as explained by Banerjee et al. [20] for both steady and pulsatile flow problems. The boundary conditions for these models are as follows.

1. Without guidewire insertion (Fig. 1d). The axisymmetric condition \(\nu_t = 0 \) is applied at the centerline. No-slip \(\nu_r, \nu_z = 0 \) boundary condition along the arterial wall and stress free boundary condition at the flow outlet are applied. The flow is allowed to develop for a length of 25 mm prox-

Table 1 Dimensions for three test sections: preangioplasty, intermediate, and postangioplasty. All dimensions are measured with IMAGEJ software. The dimensions and shape of the pre- and postangioplasty stenoses were obtained from quantitative biplanar angiography [6,11]. The dimension of intermediate stenosis is taken by considering the axial redistribution of plaque during the balloon angioplasty. Postintervention stenoses are typically 5–20% and the minimal lesion diameter of the vessel depends on the extent of angioplasty procedure. Based on the clinical evidences found by Wilson et al. [6], postintervention minimal cross-sectional area was 2.5 mm³, i.e., 1.78 mm diameter. The average diameter of vessel proximal to the stenosis was 3 mm, which makes the % area stenosis as 65%.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Dimensions (mm)</th>
<th>89% area blockage (preangioplasty)</th>
<th>80% area blockage (intermediate)</th>
<th>64.8% area blockage (postangioplasty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(d_p)</td>
<td>2.96</td>
<td>2.95</td>
<td>2.95</td>
</tr>
<tr>
<td>2</td>
<td>(l_p)</td>
<td>6.28</td>
<td>6.35</td>
<td>6.96</td>
</tr>
<tr>
<td>3</td>
<td>(d_w)</td>
<td>0.98</td>
<td>1.32</td>
<td>1.75</td>
</tr>
<tr>
<td>4</td>
<td>(l_w)</td>
<td>0.39</td>
<td>0.95</td>
<td>3.15</td>
</tr>
<tr>
<td>5</td>
<td>(l_r)</td>
<td>1.59</td>
<td>1.62</td>
<td>1.79</td>
</tr>
<tr>
<td>6</td>
<td>(d_r)</td>
<td>3.00</td>
<td>2.98</td>
<td>2.95</td>
</tr>
</tbody>
</table>

Fig. 2 Experimental setup showing the flow loop, data acquisition system, and stenotic test section.
mal to the stenosis with non-Newtonian fluid viscosity. A transient Poiseuille flow inlet boundary condition at each time step is applied with a subroutine. A detailed description of numerical methodology is provided in our earlier publications [20].

2. With guidewire insertion (Fig. 1(e)). The annulus formed between the guidewire and lumen wall is modeled with no-slip boundary condition at the artery wall and guidewire surface along with stress free boundary condition at the flow outlet. The corresponding Poiseuille flow inlet boundary condition for flow through circular annulus is applied with a subroutine. The flow is allowed to develop for a length of 25 mm proximal to the stenosis with non-Newtonian fluid viscosity.

Results

The effects of guidewire insertion on coronary hemodynamics are studied and presented for steady and pulsatile flow conditions. The results are presented in terms of overestimated pressure drop, reduction in mean coronary hyperemic flow rate and reduction in hyperemic distal coronary pressure, p_{rh}, and resultant effect on physiological true FFR and CFR. These experimental data are validated with subsequent numerical calculations. The newly introduced diagnostic parameter, LFC, is experimentally evaluated for preangioplasty and postangioplasty stenosis test sections with and without 0.35 mm guidewire insertion.

Pressure Drop-Flow ($\Delta p - Q$) Characteristic. Steady flow. Figure 4(b) shows the $\Delta p - Q$ characteristic of steady flow experiments for all stenosis test sections with and without guidewire insertion. The quadratic curve fitted relation $\Delta p = A Q^2 + B Q$ for each % area stenosis is shown in Fig. 4(b) by solid lines for experimental data, along with the dashed lines for numerical results. The first quadratic term in the above equation represents the momentum-change pressure drop and the second linear term represents the viscous pressure drop [16,23]. There is an order of magnitude decrease in the momentum-change coefficient A and relatively small decrease in the viscous coefficient B when stenosis severity decreased from preangioplasty to postangioplasty. These variations indicate that the preangioplasty stenosis is momentum change (or flow separation) dominated and the postangioplasty stenosis is viscous (friction) dominated.

Pulsatile flow. Figure 4(c) shows the $\Delta \tilde{p} - \tilde{Q}$ ("~" indicates the time averaged quantities of pulsatile hemodynamic parameters) characteristic for pulsatile flow experiments. The analogous quadratic relation for pulsatile flow, $\Delta \tilde{p} = A \tilde{Q}^2 + B \tilde{Q}$, is obtained for each stenosis test section with the numerical validations using dashed lines. These plots provide comparison of momentum change associated energy loss and viscous loss for three % area stenosis before and after guidewire insertion. The pulsatile flow increases the momentum-change pressure losses for all stenosis conditions as compared with steady flow condition. However, guidewire insertion increases the momentum-change as well as viscous pressure losses for pulsatile flow conditions. A typical recorded trans-stenotic axial pressure $p(t)$ measured by inserting the pressure guidewire is shown in Fig. 4(a).

Determination of Hyperemic Flow. The physiological flow conditions such as arterial compliance and pharmacologically induced hyperemia cannot be achieved in an in vitro experimental setup. The maximum limiting hyperemic flow rate confirming clinically measured gCFR is obtained from CFR-p_{rh} line [24]. The distal recovered pressure \tilde{p}_r is calculated for each flow and stenosis test section by the relation $\tilde{p}_r = \tilde{p}_{rh} - \Delta \tilde{p}$. Substituting for $\Delta \tilde{p}$, we get $\tilde{p}_r = \tilde{p}_{rh} - A \tilde{Q}^2 - B \tilde{Q}$, i.e., relation between \tilde{p}_r and \tilde{Q}. Proximal aortic pressures \tilde{p}_{a} are assumed as 84 mm Hg for postangioplasty, 86 mm Hg for intermediate stenosis, and 89 mm Hg for preangioplasty (Table 2). Figure 5 shows the nondimensionalized parameter \tilde{Q}/\tilde{Q}_h (this ratio is CFR at hyperemic flow, \tilde{Q}_h) versus \tilde{p}_r, where \tilde{Q}_h is the mean basal flow rate of 50 ml/min for all stenoses during guidewire based and true physiological measurements [25]. The physiological limiting conditions are imposed on the plots in Fig. 5 by CFR-p_{rh} relation, which is based on the hemodynamic end points provided in Table 2 [6,26]. The relation CFR = 0.065 × p_{rh} − 1.296 was used to calculate hyperemic flows for all stenotic conditions.

By plotting CFR-p_{rh} line from Fig. 2, the zero flow pressure, $p_{rh} = 20$ mm Hg, was obtained. The intersections of \tilde{Q}/\tilde{Q}_h versus p_{rh} curve and CFR-p_{rh} line give physiological limiting conditions in terms of CFR or gCFR, i.e., guidewire measured flow rate, \tilde{Q}_h = CFR × \tilde{Q}_h. The hyperemic flows calculated by this method for this experimental setup are summarized in Table 3 for pulsatile and steady flow conditions.

Guidewire Insertion Effect on Pressure Drop and Flow Measurements. Guidewire insertion overestimates the true physiological $\Delta \tilde{p}$, which is inversely dependent on the guidewire size relative to the minimal vessel lumen size, i.e., d_g/d_v. The true % area stenoses are increased from 64.8%, 79.9%, and 89% to 65.7%, 81.2%, and 90.3% for postangioplasty, intermediate, and preangioplasty stenoses, respectively, due to guidewire insertion. Though the increment in % area stenosis seems to be less, the guidewire flow obstruction and overestimation of pressure drop are more significant for preangioplasty than postangioplasty condition. Thus, the contribution of guidewire flow obstruction increases the as the % area or diameter stenosis increases. For pulsatile flow conditions, increases in hyperemic pressure drops (=guidewire based $\Delta \tilde{p}_h$-true physiological $\Delta \tilde{p}_h$) are 1.6 mm Hg, 3.6 mm Hg, and 4.6 mm Hg for postangioplasty, intermediate, and preangioplasty stenoses, respectively. Similarly, for steady flow conditions, increases in hyperemic pressure drops (=guidewire based $\Delta \tilde{p}_h$-true physiological $\Delta \tilde{p}_h$) are 2.3 mm Hg, 4.1 mm Hg, and 5.4 mm Hg. For pulsatile flow conditions, reductions in hyperemic flows (=true physiological \tilde{Q}_h-guidewire based \tilde{Q}_h) are 5 ml/min, 12 ml/min, and 15 ml/min for postangioplasty, intermediate, and postangioplasty conditions, respectively. For steady flow, hyperemic flow reductions (=true physiological \tilde{Q}_h-guidewire based \tilde{Q}_h) are 7.5 ml/min, 13.5 ml/min, and 17.5 ml/min. The steady flow values of overestimated pressure drop and reduced flow are greater than those for pulsatile flow. As seen in the numerical analysis for pulsatile flow condition, the pressure is recovered significantly in the distal portion of the stenosis due to shear layer instabilities caused by the formation and breakup of organized vortical cells with time near the wall region in the diverging sections [20–22,25]. For steady flow condition, these vortices are formed and are sustained for longer length reducing the pressure recovery as compared with pulsatile flow case.

Guidewire insertion enhances the viscous losses because of the added surface area of the guidewire in the vessel lumen and also enhances the momentum-change pressure losses because of the reduced flow area. From the $\Delta \tilde{p} - \tilde{Q}$ relationship, the momentum-change pressure losses are scaled by \tilde{Q}^2 term and viscous pressure losses are scaled by \tilde{Q} only. Also, from the observations of numerical steady and pulsatile cases, viscous losses are smaller than the momentum-change losses. Hence, in order to study the guidewire insertion effect on the hemodynamics, the dominant momentum-change losses are analyzed by evaluating changes in momentum-change coefficient C. When guidewire is inserted, A increased by 28% $(=0.000187/0.000146) / 100$ for coefficients, please refer to Figs. 4(b) and 4(c), under steady flow and 17% under pulsatile flow condition for postangioplasty stenosis. Similarly, for preangioplasty condition, A increased by 60% under steady flow condition and 56% under pulsatile flow cond-

Journal of Medical Devices

SEPTEMBER 2007, Vol. 1 / 189
Fig. 4 (a) Pressure pulse at various times along the axial direction measured by Volcano system in converging, throat, and diverging sections. (b) Pressure drop versus flow characteristic for steady state experiment. (c) Time averaged pressure drop versus flow characteristic for pulsatile flow experiment. Legends: diamonds: postangioplasty; triangles: intermediate stenosis; and circles: preangioplasty. Filled data points: with guidewire insertion; unfilled data points: without guidewire insertion. The solid lines: second order polynomial curve fit for experimental data; the dashed lines: second order polynomial curve fit for numerical data. The Y axis scales are the same for comparison of steady and pulsatile flow condition pressure drops.
tion. The lower % increase in A for pulsatile flow as compared with steady flow indicates that the larger pressure recovery distal to the stenosis occurs for pre- to postangioplasty cases. Also, the steady flow increases viscous pressure losses more predominantly than pulsatile flow. Hence, the overall viscous pressure drop is increased in the steady flow condition when the guidewire is inserted. In contrast, pulsatile flow increases momentum-change-related pressure losses. Hence, the overall momentum-change pressure drop is increased in the pulsatile flow condition when the guidewire is inserted. This increased momentum change elevates the organized vortical cell formation in the pulsatile flow condition, which recovers the pressure drop significantly as compared to the steady flow [20–22,25]. Thus, guidewire insertion changes trans-stenotic hemodynamics in different ways for steady and pulsatile flows.

The average difference between experimental and numerical pressure drop values is 4.3% whereas its range is 0.3–20%. The concentric configuration of guidewire placement, which is assumed in numerical calculations, results in higher pressure drop (worst case scenario) than eccentric placement of guidewire across the stenosis, as in the case of experimental measurement, for the same mean flow rate (except for postangioplasty with steady flow). This explains that the concentric guidewire configuration alters the trans-stenotic hemodynamics differently as compared to eccentric configuration. The effect of eccentricity reduces as the % area stenosis severity increases [13]. Hence, the eccentricity effect can be considered important for postangioplasty stenosis only and its effect on intermediate and preangioplasty stenosis can be neglected. The other possible reasons for these differences are discussed in the Appendix.

Without guidewire, the pressure drop for pulsatile flow condition is larger than the pressure drop for steady flow in the case of intermediate and preangioplasty stenoses. For intermediate stenosis, a hyperemic flow of 128 ml/min is associated with pressure drops of 27 mm Hg for pulsatile and 12 mm Hg for steady flow.

Table 2 Hemodynamic end points obtained from Refs. [6,26]. The in vitro data set is based on Wilson et al. [6] in vivo data, which was obtained from 32 patient group undergoing percutaneous transluminal coronary angioplasty (PTCA) with single-vessel, single-lesion coronary artery disease with stable or unstable angina pectoris.

<table>
<thead>
<tr>
<th>Lesion</th>
<th>gCFR</th>
<th>\bar{p}_a (mm Hg)</th>
<th>$\Delta\bar{p}_a$ (mm Hg)</th>
<th>\bar{p}_h (mm Hg)</th>
<th>gFFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preangioplasty</td>
<td>2.3±0.1</td>
<td>89±3</td>
<td>34</td>
<td>55</td>
<td>0.62</td>
</tr>
<tr>
<td>Intermediate</td>
<td>3.3</td>
<td>86</td>
<td>14.3</td>
<td>70.4</td>
<td>0.82</td>
</tr>
<tr>
<td>Postangioplasty</td>
<td>3.6±0.3</td>
<td>84±3</td>
<td>7.4</td>
<td>75.2</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Without guidewire, the pressure drop for pulsatile flow condition is larger than the pressure drop for steady flow in this case of intermediate and preangioplasty stenoses. For intermediate stenosis, a hyperemic flow of 128 ml/min is associated with pressure drops of 27 mm Hg for pulsatile and 12 mm Hg for steady flow.

Table 3 Summary of basal and hyperemic flows for all stenoses. For all stenosis conditions, with and without guidewire inserted condition, basal flow is assumed as 50 ml/min, for both steady and pulsatile flow scenario [25].

<table>
<thead>
<tr>
<th></th>
<th>Guidewire based hyperemic flow (with guidewire insertion)</th>
<th>True hyperemic flow (without guidewire insertion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steady flow</td>
<td>Pulsatile flow</td>
</tr>
<tr>
<td></td>
<td>Re<sub>e</sub></td>
<td>Re<sub>m</sub></td>
</tr>
<tr>
<td>Preangioplasty</td>
<td>93</td>
<td>185</td>
</tr>
<tr>
<td>Intermediate</td>
<td>142</td>
<td>283</td>
</tr>
<tr>
<td>Postangioplasty</td>
<td>178</td>
<td>354</td>
</tr>
</tbody>
</table>
The pulsatile flow is considered to be a larger momentum-change intermediate and preangioplasty characteristics, postangioplasty steady flow conditions showing a 13 mm Hg difference. Unlike with pressure drops of 40 mm Hg for pulsatile and 27 mm Hg for angioplasty condition, a hyperemic flow of 95 ml/min is associated with linear pressure scanner readings, and physiological true FFR is calculated from the digital pressure scanner data. Figure 6 shows the FFR—gFFR characteristic for all stenoses under pulsatile flow conditions. A highly regressed linear correlation between FFR and gFFR is obtained: $FFR = 0.92 \times gFFR + 0.097$ ($R^2 = 0.99$, $n = 3$).

Previously, gFFR was measured in a group of 15 patients with clinically stable, single intermediate lesions in a native coronary vessel of diameter ≥2.5 mm [27]. In that study, FFR was measured by two methods: (a) inserting 0.014 in. diameter guidewire through 6F guiding catheter and (b) analytically calculating from stenotic dimensions measured by 3D intravascular ultrasound (IVUS). There is a good match between previously reported in vivo data [27] and present in vitro data, especially for intermediate stenosis region, as shown in Fig. 6(a).

A similar plot for CFR and gCFR is shown in Fig. 6(b) for pulsatile flow conditions, with highly regressed correlation $CFR = 0.91 \times gCFR + 0.44$ ($R^2 = 0.99, n = 3$). The difference between FFR and gFFR as well as CFR and gCFR increases as severity of coronary stenoses increases. This confirms the fact that overestimation of pressure drop due to guidewire insertion is inversely dependent on the ratio of guidewire size to minimal lumen size (d_g/d_a) [13]. Using the Q/Q_b versus p_r curves with the same limiting CFR—p_{m} line for steady flow experimental data, FFR-gFFR and CFR-gCFR correlations are obtained (figure not shown in the paper). These correlations are $FFR = 0.91 \times gFFR + 0.11$ ($R^2 = 0.99$) and $CFR = 0.89 \times gCFR + 0.56$ ($R^2 = 0.99$). In physiological flow range for intermediate stenoses, where guidewire diagnostic is more uncertain, FFR-gFFR and CFR-gCFR correlations for steady and pulsatile flow conditions coincide with each other with maximum of 1.5% difference.

Even though there is relatively large difference between hyperemic pressure drops for steady and pulsatile flow experiments, FFR-gFFR and CFR-gCFR characteristics are similar. Depending on the distal pressure recovery, less pulsatile (or steady) flow may give different pressure drop than those for higher pulsatile flow. The arterial wall layer thickness, distribution of plaque in the lumen, and its effect on histology of the arterial tissues will change the elasticity of the artery and consequently the flow pulse shape. Also, the distal pressure is generally recovered largely during the diastolic phase of coronary flow, which may change hemodynamic end points of coronary ischemia from patient to patient.

LFC-CFR and LFC-FFR. The new diagnostic parameter LFC, has been recently introduced by our group [16] for assessing coronary lesion severity. Unlike gFFR and gCFR, gLFC assesses simultaneous measurements of flow, pressure drop, and % area of stenoses under guidewire inserted condition. The LFC is defined as $LFC=\frac{1}{\kappa \times Q} [(A_m-A_c)(2\Delta \bar{p}/\rho)^{0.5}]$. The area measurement is introduced in the equation of LFC as κ. For guidewire based method, $\kappa=(A_m-A_c)/(A_m-A_t)$ and without guidewire case, $\kappa=A_m/A_t$. The LFC provides wide measure of hemodynamics in the stenosed coronary artery and hence proposed to assess the hemodynamic severity of coronary arterial stenosis.

The LFC and gLFC are evaluated for postangioplasty and preangioplasty conditions. Figure 7 shows LFC-FFR comparison, with and without guidewire insertion, which are well regressed with linear fit. For postangioplasty, the relations are $gLFC=-1.47 \times \frac{1}{(p/r)}+1.79$ and $LFC=-1.69 \times \frac{1}{(p/r)}+2.03$, whereas for preangioplasty, the relations are $gLFC=-0.28 \times \frac{1}{(p/r)}+0.69$ and $LFC=-0.32 \times \frac{1}{(p/r)}+0.76$. At hyperemic condition, the ratio $\frac{p}{\overline{p}}$ is defined as FFR or gFFR. For postangioplasty, gFFR of 0.9 corresponds to gLFC of 0.46; for preangioplasty, gFFR of 0.5 corresponds to gLFC of 0.55. Thus, as stenosis severity increases the gLFC increases, unlike gFFR. In preangioplasty stenosis condition, $\Delta \bar{p}$ increases more nonlinearly due to momentum-change effect than that in postangioplasty stenosis. Hence, the denominator in the equation for gLFC is lower for preangioplasty stenosis condition, $\overline{p}_{\text{post}}$ is more viscous loss enhancer than viscous loss \overline{Q}. Hence, intermediate p_{post} is lower for preangioplasty, the relations are $gLFC=-0.28 \times \frac{1}{(p/r)}+0.69$ and without guidewire case, $\kappa=A_m/A_t$. The LFC provides wide measure of hemodynamics in the stenosed coronary artery and hence proposed to assess the hemodynamic severity of coronary arterial stenosis.

The LFC and gLFC are evaluated for postangioplasty and preangioplasty conditions. Figure 7(a) shows LFC-FFR comparison, with and without guidewire insertion, which are well regressed with linear fit. For postangioplasty, the relations are $gLFC=-1.47 \times \frac{1}{(p/r)}+1.79$ and $LFC=-1.69 \times \frac{1}{(p/r)}+2.03$, whereas for preangioplasty, the relations are $gLFC=-0.28 \times \frac{1}{(p/r)}+0.69$ and $LFC=-0.32 \times \frac{1}{(p/r)}+0.76$. At hyperemic condition, the ratio $\frac{p}{\overline{p}}$ is defined as FFR or gFFR. For postangioplasty, gFFR of 0.9 corresponds to gLFC of 0.46; for preangioplasty, gFFR of 0.5 corresponds to gLFC of 0.55. Thus, as stenosis severity increases the gLFC increases, unlike gFFR. In preangioplasty stenosis condition, $\Delta \bar{p}$ increases more nonlinearly due to momentum-change effect than that in postangioplasty stenosis. Hence, the denominator in the equation for gLFC is lower for preangioplasty than for postangioplasty condition. This explains the increase in gLFC from postangioplasty to preangioplasty conditions.

However, LFC is directly proportional to the CFR, as shown in Fig. 7(b). For postangioplasty, the relations are $gLFC=0.065$ and $gLFC=0.99, n=3$.
$g_{\text{FFR}} = 0.11 \times \frac{Q}{Q_b} + 0.37$ and $LFC = 0.064 \times \frac{Q}{Q_b} + 0.31$. For preangioplasty condition, the correlations are $g_{\text{LFC}} = 0.0 \times \frac{Q}{Q_b} + 0.0$ and $LFC = 0.0 \times \frac{Q}{Q_b} + 0.4$. These relations are highly regressed ($R^2 > 0.9$). At hyperemic condition, the ratio $\frac{Q}{Q_b}$ is defined as CFR or gCFR. For postangioplasty, gCFR of 3.0 corresponds to gCFR of 0.46; for preangioplasty, gCFR of 1.6 corresponds to gLFC of 0.55. Thus, it is possible to use gLFC considering guidewire obstruction effect to assess severity of coronary stenosis, instead of measuring two different parameters, gFFR and gCFR.

Discussion

Studies on the impact of guiding catheter and balloon angioplasty catheter for measuring intracoronary pressure concluded that the occurrence of overestimation of pressure drop and effect on gFFR is unpredictable [28]. Hence, in clinical practice, it is suggested to use the FFR-gFFR or CFR-gCFR correlation to determine the true FFR or CFR from existing clinical measurements of gFFR and gCFR values measured by guidewire and consequently evaluate physiological ischemic conditions, particularly for intermediate stenosis regime signifying vulnerable lesion.

Guidewire flow-obstruction effect, which overestimates the functional degree of stenosis (by underestimating the true FFR and CFR), leads to erroneous conclusions and needless interventions. The guidewire insertion induced % error in gFFR measurement was approximately represented as $1 - \left(\frac{R_v^2 P_s^2}{R_v^2 P_s^2 - d_e^2/4} \right)^2 \times 100$, where d_e is the guidewire diameter, P_s is the % diameter stenosis/100, and R_v is the vessel radius [5,29]. The 10–40% error was estimated in gFFR measurement for intermediate stenosis. Based on an in vitro study [8], it has been documented that (1) the influence of guidewire on stenosis hemodynamics is negligible in the range of stenoses where functional assessment is desirable and (2) the error in gFFR due to the guidewire insertion is appreciable only when gFFR is less than 0.75. However, based on our earlier numerical estimations [20–22,25], introduction of the guidewire produces a larger % difference in guidewire based measurement of ΔP above the pathophysiological values.

There are many variables which govern the gCFR or flow mea-
measurement. Major parameters can be summarized as viscosity of blood with varying hematocrit [19], diffused stenosis length, multiple stenoses, microvascular dysfunction, and initial base line flow condition [30]. The effect of steady and pulsatile flow regime on trans-stenotic pressure drop has already been introduced in this experimental study, though effect of different flow wave form shapes needs to be studied in the future along with other parameters. All physiological changes from patient to patient are reflected on CFR–p_{th} line. This study is based on the CFR–p_{th} correlation reported previously [6,25], giving zero flow pressure p_{st}<20 mm Hg. However, distal microvascular resistance and collateral flow may change the hemodynamics of epicardial stenosis and p_{st}. This change is observed with shift in CFR–p_{th} line, changing p_{th} from 15 mm Hg to 40 mm Hg [28]. Thus, to apply the FFR-gFFR and CFR-gCFR correlations for large patient groups, the effect of different CFR–p_{th} lines on these correlations should be studied further.

The indirect effect of guide catheter diameter in association with guidewire diameter on gFFR should be considered [28,31]. Although no significant difference was reported in clinical trials for 4F and 7F guiding catheters [32], the catheter diameter affects gFFR measurement in addition to the guidewire size [31]. This can be easily checked from the clinical data available for determining the limiting ischemic conditions of gFFR and gCFR with the use of guidewire (Table 4). It is assumed that the difference between the limiting ischemic gFFR and gCFR values, viz., 0.68–0.75 and 1.7–2, respectively, is due to various guidewire and catheter sizes used in these clinical trials. However, patient population, distal microvascular resistance, and different noninvasive stress test conditions may influence the limiting conditions of gFFR and gCFR.

The guidewire flow-obstruction effect is more significant in the diagnosis of mild to intermediate stenosis [28] whose occurrence is quite large in patients undergoing angioplasty [33]. Under such clinical settings, the decision making of performing angioplasty and stent placement or to defer these procedures becomes complex and difficult. To assess intermediate stenosis in the event of microvascular dysfunction, simultaneous gCFR and gFFR measurements are suggested. For this purpose, a pressure and Doppler flow guidewire were inserted simultaneously [34]. With single pressure guidewire, the gFFR was measured as 0.77. After insertion of Doppler guidewire, simultaneously measured gFFR and gCFR were 0.72 and 1.6, respectively. Extrapolating these clinical data, true FFR and CFR (without any guidewire insertion) would be greater than 0.77 and 1.6, respectively. However, with double guidewire insertion, FFR and CFR were reduced below the corresponding threshold values of 0.75 for FFR and 2 for CFR, respectively. To avoid this diagnostic conundrum, a new diagnostic parameter, LFC, is studied, which considers the effect of guidewire or catheter diameter in addition to simultaneously measured coronary trans-stenotic pressure drop and flow. However, more experiments are needed for intermediate area stenosis regime to get more accurate relations between physiological parameters such as gFFR, gCFR, and gLFC. Thus, in the future, diagnosis of intermediate stenosis may be carried out by using a single parameter, gLFC (Fig. 7).

Conclusion

There is larger difference between guidewire based and physiological or true measurement of pressure drops for stenosis test sections under steady and pulsatile flow conditions. Hence, pulsatile flow experiments are more physiologically appropriate than steady flow experiments. The guidewire insertion under steady or pulsatile flow alters the trans-stenotic hemodynamics differently. However, the FFR-gFFR and CFR-gCFR relations remain similar for steady and pulsatile flow conditions. These correlations match well with in vivo data and hence may be used in clinical practice to determine true FFR and CFR based on the measurement of guidewire based gFFR and gCFR. This will help to reduce the confusion during the diagnosis of severity of coronary stenosis. The newly developed diagnostic parameter (LFC) is also well correlated with FFR and CFR for preangioplasty and postangioplasty stenoses in these in vitro experiments, justifying its possible clinical use.

Acknowledgment

This work is supported by the American Heart Association: National-Scientific Development Grant (Reference No. 0335270N). Also, special thanks to Dr. Bernard J. Dardzinski, Division Chief, Imaging Research Center and Radiology Research, Cincinnati Children’s Hospital, for allowing us to use MicroCT facility.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>% area stenosis</td>
<td>[1 - (A_w - A_s)/(A_w - A_g)] \times 100]</td>
</tr>
<tr>
<td>(A = \pi d^2/4)</td>
<td>flow cross-sectional area</td>
</tr>
<tr>
<td>CFR</td>
<td>ratio of mean coronary flow at hyperemia to mean coronary flow at rest</td>
</tr>
<tr>
<td>(\bar{Q}_b / \bar{Q}_b)</td>
<td>diameter of vessel</td>
</tr>
<tr>
<td>FFR</td>
<td>myocardial fractional flow reserve</td>
</tr>
<tr>
<td>(\bar{P}_c - \bar{P}_b)</td>
<td>central venous pressure -0 mm Hg</td>
</tr>
<tr>
<td>(P_c)</td>
<td>coronary pressure</td>
</tr>
<tr>
<td>(Q)</td>
<td>coronary flow</td>
</tr>
<tr>
<td>(R_c)</td>
<td>proximal Reynolds number</td>
</tr>
<tr>
<td>(R_e)</td>
<td>throat Reynolds number</td>
</tr>
<tr>
<td>(\Delta p = p_a - p_b)</td>
<td>trans-stenotic pressure drop</td>
</tr>
<tr>
<td>(\nu)</td>
<td>blood velocity</td>
</tr>
<tr>
<td>(\mu)</td>
<td>density of blood</td>
</tr>
<tr>
<td>(\sigma_t)</td>
<td>ultimate tensile strength (ASTM D 638)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>dynamic viscosity</td>
</tr>
<tr>
<td>(\nu)</td>
<td>kinematic viscosity</td>
</tr>
</tbody>
</table>

Subscript

- \(a\): proximal aortic pressure
- \(b\): base line flow condition
- \(c\): constriction section
- \(e\): proximal nonstenosed vessel lumen
- \(h\): pharmacologically induced hyperemia
- \(g\): guidewire
- \(m\): minimum stenosis lumen
- \(r\): distal region to the stenosis
- \(rh\): recovered hyperemic pressure distal to the stenosis
- \(zl\): zero flow

Superscript

- \(\sim\): time averaged physiological quantity (pressure or flow)
- \(g\): guidewire; FFR or CFR measured by inserting sensor tipped guidewire through stenosed vessel

Appendix

Sources of errors between numerical and experimental results are as follows.

1. During in vitro experiments, guidewire may be eccentric with respect to the stenosis walls, showing asymmetric configuration. Also, guidewire oscillates inside the stenosis test section due to pulsatile flow. The concentric configuration of guidewire placement, which is assumed in numerical calculations, results in higher \(\Delta \bar{p}\) (worst case scenario) than eccentric placement of guidewire across the stenosis, as in the case of experimental measurements, for the same mean flow rate.

2. All dimensions are measured with MicroCT, having an accuracy of 37 \(\mu\)m. In preangioplasty stenosis regions, small change in \(d_a\) and \(L_m\) will change the pressure drop appreciably [8].

3. Assumption of axisymmetric model. The experimental geometry is assumed as axisymmetric for computational validation. However, the geometries of manufactured test sections are not exactly axisymmetric as per MicroCT images (Fig. 1).

4. Viscosity of BAF. The viscosity of BAF (\(\mu_b=55.72\) cP, \(\mu_b=3.39\) cP, \(\lambda=9.67\) s, \(n=0.2\)) is somewhat lower than the blood (\(\mu_b=56\) cP, \(\mu_b=3.45\) cP, \(\lambda=3.313\) s, \(n=0.3568\)) [19]. Due to the lower viscosity of BAF, rigorous numerical technique is needed for computational stability. The higher viscosity will further stabilize the numerical computations as well as experimental data.

5. Pressure scanner accuracy, \(\pm0.5 mm Hg\).

6. The shear layer instabilities detected in 80% and 90% area stenosis [20].

7. Dimensions (length and diameter) of pressure port and their axial positions. Due to flow separation and vortex formation in the distal region, streamlines are not parallel to the vessel wall and are not perpendicular to the pressure port axis in the distal region.

References

