Personal tools
Document Actions

Coronary artery and microvascular disease diagnostics

  1. Hebbar UU, Effat MA, Peelukhana SV, Arif I, Banerjee RK. Delineation of epicardial stenosis in patients with microvascular disease using pressure drop coefficient: A pilot outcome study. World journal of cardiology. 2017;9(12):813-21.  Link
  2. Peelukhana SV, Banerjee RK, van de Hoef TP, Kolli KK, Effat MA, Helmy T, Leesar M, Kerr H, Piek JJ, Succop P, Back L, Arif I. Evaluation of lesion flow coefficient for the detection of coronary artery disease in patient groups from two academic medical centers. Cardiovasc Revasc Med. 2017;11(17):30340-8. Link
  3. Effat MA, Peelukhana SV, Banerjee RK. Clinical outcomes of combined flow-pressure drop measurements using newly developed diagnostic endpoint: Pressure drop coefficient in patients with coronary artery dysfunction. World J Cardiol., 2016;8(3):283-292. Link
  4. Kolli KK, van de Hoef, Effat MA, Banerjee RK, Peelukhana SV, Succop P, Leesar MA, Arif I, Piek JJ, Helmy TA. Diagnostic cut-off for pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve: A patient-level analysis. Catheterization and Cardiovascular Interventions, 2016;87(2):273-82. Link
  5. Peelukhana SV, Banerjee RK, Kolli KK, Fernandez-Ulloa M, Arif I, Effat M, Helmy T, Kerr H. Benefit of ECG-gated rest and stress N-13 cardiac PET imaging for quantification of LVEF in ischemic patients. Nucl Med Commun., 2015;36(10):986-98. Link
  6. Peelukhana SV, Effat MA, Kolli KK, Imran A, Helmy TA, Leesar MA, Kerr H, Back LH, Banerjee RK. Lesion flow coefficient, a combined anatomical and functional parameter for detection of coronary artery disease: A clinical study. J Invasive Cardiol., 2015;27(1): 54-64. Link
  7. Peelukhana SV, Kerr H, Kolli KK, Fernandez-Ulloa M, Gerson M, Effat MA, Imran A, Helmy TA, Banerjee RK. Benefits of cardiac N13 ammonia PET CFR for combined anatomical and functional diagnosis of coronary artery disease: A pilot study. Annals of Nuclear Medicine, 2014;28(8):746-60. Link
  8. Kolli KK, Effat MA, Peelukhana SV, Succop P, Back LH, Leesar MA, Helmy TA, Imran A, Banerjee RK. Hyperemia-free delineation of epicardial and microvascular impairments using a basal index. Annals of Biomed. Eng., 2014;42(8): 1681-90. Link
  9. Moh JH, Cho YI, Cho DJ, Kim D, Banerjee RK. Influence of non-Newtonian viscosity of blood on microvascular impairment. Clin Hemorheol Microcirc., 2014;57(2):111-8. Link
  10. D'Souza G, Peelukhana SV, Banerjee RK. Diagnostic uncertainties during assessment of serial coronary stenoses: an in-vitro study. J Biomech Eng, 2014;136(2):021026-1-11. Link
  11. Kolli KK, Imran A, Peelukhana SV, Succop P, Back LH, Helmy TA, Leesar MA, Effat MA, Banerjee RK. Diagnostic performance of pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve. J Invasive Cardiol., 2014;26(5):188-95. Link
  12. Kolli KK, Helmy TA, Peelukhana SV, Imran A, Leesar MA, Back LH, Banerjee RK, Effat MA. Functional diagnosis of coronary stenosis using pressure drop coefficeint: A Pilot study in humans. Catheterization and Cardiovascular Interventions, 2014;83(3):377-85. Link
  13. Peelukhana SV, Kolli KK, Leesar M, Effat MA, Helmy TA, Imran A, Schneeberger EW, Succop P, Banerjee RK. Effect of myocardial contractility on hemodynamic endpoints under concomitant microvascular disease in a porcine model. Heart and Vessels., 2014;29(1):97-109. Link
  14. D'Souza G, Peelukhana SV, Banerjee RK. Numerical validation of diagnostic uncertainities during in-vitro assessment of serial coronary stenoses. J Med Devices, 2013;7(4):040924 (1-2). Link
  15. Kolli KK, Paul AP, Back LH, Effat MA, Banerjee RK. Optimization of balloon obstruction for simulating equivalent pressure drop in physiological stenoses. Biorheology, 2013;50(5-6):257-68. Link
  16. Goswami IC, Peelukhana SV, Al-Rjoub MF, Back LH, Banerjee RK.  Influence of variable native arterial diameter and vasculature status on coronary diagnostic parameters. J Biomech Eng, 2013;135(9): 91005-8. Link
  17. Peelukhana SV, Banerjee RK, Kolli KK, Effat MA, Helmy TA, Leesar M, Schneeberger EW, Succop P, Gottliebson W, Imran A. Effect of heart rate on hemodynamic endpoints under concomitant microvascular disease in a porcine model. Am J Physiol Heart Circ Physiol., 2012;302 (8):H1563-73. Link
  18. Kolli KK, Banerjee RK, Peelukhana SV, Effat MA, Leesar M, Imran A, Schneeberger EW, Succop P, Gottliebson W, Helmy TA. Effect of changes in contractility on pressure drop coefficient and fractional flow reserve in a porcine model. J Invasive Cardiol., 2012;24(1):6-12.  Link
  19. Konala B, Das A, Banerjee RK. Influence of arterial wall-stenosis compliance on the coronary diagnostic paramaters. J Biomech, 2011;44(5):842-47. Link
  20. Rajabi-Jaghargh E, Kolli KK, Back LH, Banerjee RK. Effect of guidewire on contribution of loss due to momentum change and viscous loss to the translesional pressure drop across coronary artery stenosis: An analytical approach. Biomed Eng Online, 2011;10(1):51.  Link
  21. Konala B, Das A, Banerjee RK. Influence of arterial wall compliance on pressure drop across coronary artery stenoses under hyperemic flow condition. Mol Cell Biomech., 2011;8(1):1-20.  Link
  22. Kolli KK, Banerjee RK, Peelukhana SV, Helmy TA, Leesar M, Imran A, Schneeberger EW, Hand D, Succop P, Gottliebson W, Effat MA. Influence of heart rate on fractional flow reserve, pressure drop coefficient and lesion flow coefficient for epicardial coronary stenosis in a porcine model. Am J Physiol Heart Circ Physiol., 2010;300 (1):H382-7.  Link
  23. Kolli KK, Helmy TA, Effat MA, Imran A, Leesar MA, Schneeberger EW, Hand D, Gottliebson W, Succop P, Peelukhana SV, Banerjee RK. Influence of contractility and heart rate on pressure drop coefficient and fractional flow reserve for epicardial coronary stenosis. Cardiovascular Revascularizaion Medicine, Special Feature., 2010;11(3);214.  Link
  24. Peelukhana SV, Back LH, Banerjee RK. Influence of coronary collateral flow on coronary diagnostic parameters: An in-vitrostudy. J Biomech., 2009;42(16):2753-9.  Link
  25. Banerjee RK, Ashtekar KD, Effat MA, Helmy TA, Kim E, Schneeberger EW, Sinha Roy A, Gottliebson W, Back LH. Concurrent assessment of epicardial coronary stenosis and microvascular dysfunction using diagnostics endpoints derived from fundamental fluid dynamics principles. J Invasive Cardiol., 2009;21(10):511-7.  Link
  26. Banerjee RK, Ashtekar KD, Helmy TA, Effat MA, Back LH, Khoury SF. Hemodynamic diagnostics of epicardial coronay stenoses: in-vitro experimental and computational study. Biomed Eng Online, 2008;7:24. Link
  27. Sinha Roy A, Back MR, Koury SF, Schneeberger EW, Back LH, Velury VV, Millard RW, Banerjee RK. Functional and anatomic diagnosis of coronary artery stenoses. J Surg Res, 2008;150(1):24-33.  Link
  28. Banerjee RK, Sinha Roy A, Back LH, Back MR, Khoury SF, Millard RW. Characterizing momentum change and viscous loss of a hemodynamic endpoint in assessment of coronary lesions. J Biomech, 2007;40:652-62.  Link
  29. Ashtekar KD, Back LH, Khoury SF, Banerjee RK. In Vitro quantification of guidewire flow-obstruction effect in model coronary stenoses for interventional diagnostic procedure. J Med Devices, 2007; 1:185-96.  Link
  30. Sinha Roy A, Back LH, Banerjee RK. Guidewire flow obstruction effect on pressure drop - flow relationship in moderate coronary artery stenosis. J Biomech, 2006;39:853-64.  Link
  31. Sinha Roy A, Banerjee RK, Back LH, Back MR, Khoury S, Millard RW. Delineating the guidewire flow obstruction effect in assessment of fractional flow reserve and coronary flow reserve measurements. Am J Physiol Heart Circ Physiol., 2005;289:392-397.  Link
  32. Banerjee RK, Back LH, Back MR, Cho YI. Physiologic flow analysis in significant human coronary artery stenoses. Biorheology, 2003;40:451-76.  Link
  33. Banerjee RK, Back LH, Back MR. Effects of diagnostic guidewire catheter presence on tran-slesional hemodynamic measurements across significant coronary artery stenoses. Biorheology, 2003;40:613-35.  Link
  34. Banerjee RK, Back LH, Back MH, Cho YI. Physiological flow simulation in residual human stenoses after coronary angioplasty. J Biomech Eng, 2000;122:310-20.   Link
  35. Back LH, Banerjee RK. Estimated flow resistance increase in a spiral human coronary artery segment. J Biomech Eng, 2000;122:675-7.  Link
  36. Banerjee RK, Back LH, Back MH, Cho YI. Catheter obstruction effect on pulsatile flow rate-pressure drop during coronary angioplasty. J Biomech Eng, 1999;121:281-9.   Link

 

by kollikk — last modified 2018-09-17 12:40